An infinite combinatorial statement with a poset parameter

نویسندگان

  • Pierre Gillibert
  • Friedrich Wehrung
چکیده

We introduce an extension, indexed by a partially ordered set P and cardinal numbers κ, λ, denoted by (κ,<λ) ; P , of the classical relation (κ, n, λ) → ρ in infinite combinatorics. By definition, (κ, n, λ) → ρ holds if every map F : [κ] → [κ] has a ρ-element free set. For example, Kuratowski’s Free Set Theorem states that (κ, n, λ) → n + 1 holds iff κ ≥ λ+n, where λ+n denotes the n-th cardinal successor of an infinite cardinal λ. By using the (κ,<λ) ; P framework, we present a self-contained proof of the first author’s result that (λ+n, n, λ) → n + 2, for each infinite cardinal λ and each positive integer n, which solves a problem stated in the 1985 monograph of Erdős, Hajnal, Máté, and Rado. Furthermore, by using an order-dimension estimate established in 1971 by Hajnal and Spencer, we prove the relation (λ+(n−1) , r, λ) → 2 ⌊

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Minimal Size of Infinite Maximal Antichains in Direct Products of Partial Orders

For a partial order P having infinite antichains by a(P) we denote the minimal cardinality of an infinite maximal antichain in P and investigate how does this cardinal invariant of posets behave in finite products. In particular we show that min{a(P), p(sqP)} ≤ a(P) ≤ a(P), for all n ∈ N, where p(sqP) is the minimal size of a centered family without a lower bound in the separative quotient of t...

متن کامل

Rings with a setwise polynomial-like condition

Let $R$ be an infinite ring. Here we prove that if $0_R$ belongs to ${x_1x_2cdots x_n ;|; x_1,x_2,dots,x_nin X}$ for every infinite subset $X$ of $R$, then $R$ satisfies the polynomial identity $x^n=0$. Also we prove that if $0_R$ belongs to ${x_1x_2cdots x_n-x_{n+1} ;|; x_1,x_2,dots,x_n,x_{n+1}in X}$ for every infinite subset $X$ of $R$, then $x^n=x$ for all $xin R$.

متن کامل

Classification of the factorial functions of Eulerian binomial and Sheffer posets

We give a complete classification of the factorial functions of Eulerian binomial posets. The factorial function B(n) either coincides with n!, the factorial function of the infinite Boolean algebra, or 2n−1, the factorial function of the infinite butterfly poset. We also classify the factorial functions for Eulerian Sheffer posets. An Eulerian Sheffer poset with binomial factorial function B(n...

متن کامل

Characterization of the factorial functions of Eulerian binomial and Sheffer posets

We completely characterize the factorial functions of Eulerian binomial posets. The factorial function B(n) either coincides with n!, the factorial function of the infinite Boolean algebra, or 2n−1, the factorial function of the infinite butterfly poset. We also classify the factorial functions for Eulerian Sheffer posets. An Eulerian Sheffer poset with binomial factorial function B(n) = n! has...

متن کامل

Simplicial Shellable Spheres via Combinatorial Blowups

The construction of the Bier sphere Bier(K) for a simplicial complex K is due to Bier (1992). Björner, Paffenholz, Sjöstrand and Ziegler (2005) generalize this construction to obtain a Bier poset Bier(P, I) from any bounded poset P and any proper ideal I ⊆ P . They show shellability of Bier(P, I) for the case P = Bn, the boolean lattice, and thereby obtain ‘many shellable spheres’ in the sense ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Combinatorica

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2011